Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Exp Immunol ; 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2305546

ABSTRACT

Post-acute cardiac sequelae, following SARS-CoV-2 infection, are well recognised as complications of COVID-19. We have previously shown the persistence of autoantibodies against antigens in skin, muscle, and heart in individuals following severe COVID-19; the most common staining on skin tissue displayed an inter-cellular cement pattern consistent with antibodies against desmosomal proteins. Desmosomes play a critical role in maintaining the structural integrity of tissues. For this reason, we analysed desmosomal protein levels and the presence of anti-desmoglein (DSG) 1, 2 and 3 antibodies in acute and convalescent sera from patients with COVID-19 of differing clinical severity. We find increased levels of DSG2 protein in sera from acute COVID-19 patients. Furthermore, we find that DSG2 autoantibody levels are increased significantly in convalescent sera following severe COVID-19 but not in hospitalised patients recovering from influenza infection or healthy controls. Levels of autoantibody in sera from patients with severe COVID-19 were comparable to levels in patients with non-COVID-19-associated cardiac disease, potentially identifying DSG2 autoantibodies as a novel biomarker for cardiac damage. To determine if there was any association between severe COVID-19 and DSG2, we stained post-mortem cardiac tissue from patients who died from COVID-19 infection. This confirmed DSG2 protein within the intercalated discs and disruption of the intercalated disc between cardiomyocytes in patients who died from COVID-19. Our results reveal the potential for DSG2 protein and autoimmunity to DSG2 to contribute to unexpected pathologies associated with COVID-19 infection.

2.
Immunology ; 2022 Sep 29.
Article in English | MEDLINE | ID: covidwho-2281411

ABSTRACT

Complement, a critical defence against pathogens, has been implicated as a driver of pathology in COVID-19. Complement activation products are detected in plasma and tissues and complement blockade is considered for therapy. To delineate roles of complement in immunopathogenesis, we undertook the largest comprehensive study of complement in COVID-19 to date, comprehensive profiling of 16 complement biomarkers, including key components, regulators and activation products, in 966 plasma samples from 682 hospitalized COVID-19 patients collected across the hospitalization period as part of the UK ISARIC4C (International Acute Respiratory and Emerging Infection Consortium) study. Unsupervised clustering of complement biomarkers mapped to disease severity and supervised machine learning identified marker sets in early samples that predicted peak severity. Compared to healthy controls, complement proteins and activation products (Ba, iC3b, terminal complement complex) were significantly altered in COVID-19 admission samples in all severity groups. Elevated alternative pathway activation markers (Ba and iC3b) and decreased alternative pathway regulator (properdin) in admission samples were associated with more severe disease and risk of death. Levels of most complement biomarkers were reduced in severe disease, consistent with consumption and tissue deposition. Latent class mixed modelling and cumulative incidence analysis identified the trajectory of increase of Ba to be a strong predictor of peak COVID-19 disease severity and death. The data demonstrate that early-onset, uncontrolled activation of complement, driven by sustained and progressive amplification through the alternative pathway amplification loop is a ubiquitous feature of COVID-19, further exacerbated in severe disease. These findings provide novel insights into COVID-19 immunopathogenesis and inform strategies for therapeutic intervention.

3.
EBioMedicine ; 87: 104402, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2178115

ABSTRACT

BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Follow-Up Studies , Vaccination , Hospitalization , Immunoglobulin A , Immunoglobulin G , Antibodies, Viral , Antibodies, Neutralizing
4.
Open Forum Infect Dis ; 9(5): ofac179, 2022 May.
Article in English | MEDLINE | ID: covidwho-1915843

ABSTRACT

Admission procalcitonin measurements and microbiology results were available for 1040 hospitalized adults with coronavirus disease 2019 (from 48 902 included in the International Severe Acute Respiratory and Emerging Infections Consortium World Health Organization Clinical Characterisation Protocol UK study). Although procalcitonin was higher in bacterial coinfection, this was neither clinically significant (median [IQR], 0.33 [0.11-1.70] ng/mL vs 0.24 [0.10-0.90] ng/mL) nor diagnostically useful (area under the receiver operating characteristic curve, 0.56 [95% confidence interval, .51-.60]).

5.
BMC Med ; 20(1): 25, 2022 01 13.
Article in English | MEDLINE | ID: covidwho-1690915

ABSTRACT

Relationships between viral load, severity of illness, and transmissibility of virus are fundamental to understanding pathogenesis and devising better therapeutic and prevention strategies for COVID-19. Here we present within-host modelling of viral load dynamics observed in the upper respiratory tract (URT), drawing upon 2172 serial measurements from 605 subjects, collected from 17 different studies. We developed a mechanistic model to describe viral load dynamics and host response and contrast this with simpler mixed-effects regression analysis of peak viral load and its subsequent decline. We observed wide variation in URT viral load between individuals, over 5 orders of magnitude, at any given point in time since symptom onset. This variation was not explained by age, sex, or severity of illness, and these variables were not associated with the modelled early or late phases of immune-mediated control of viral load. We explored the application of the mechanistic model to identify measured immune responses associated with the control of the viral load. Neutralising antibodies correlated strongly with modelled immune-mediated control of viral load amongst subjects who produced neutralising antibodies. Our models can be used to identify host and viral factors which control URT viral load dynamics, informing future treatment and transmission blocking interventions.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Humans , Viral Load
6.
Nat Commun ; 13(1): 80, 2022 01 10.
Article in English | MEDLINE | ID: covidwho-1616982

ABSTRACT

Cross-reactive immune responses to SARS-CoV-2 have been observed in pre-pandemic cohorts and proposed to contribute to host protection. Here we assess 52 COVID-19 household contacts to capture immune responses at the earliest timepoints after SARS-CoV-2 exposure. Using a dual cytokine FLISpot assay on peripheral blood mononuclear cells, we enumerate the frequency of T cells specific for spike, nucleocapsid, membrane, envelope and ORF1 SARS-CoV-2 epitopes that cross-react with human endemic coronaviruses. We observe higher frequencies of cross-reactive (p = 0.0139), and nucleocapsid-specific (p = 0.0355) IL-2-secreting memory T cells in contacts who remained PCR-negative despite exposure (n = 26), when compared with those who convert to PCR-positive (n = 26); no significant difference in the frequency of responses to spike is observed, hinting at a limited protective function of spike-cross-reactive T cells. Our results are thus consistent with pre-existing non-spike cross-reactive memory T cells protecting SARS-CoV-2-naïve contacts from infection, thereby supporting the inclusion of non-spike antigens in second-generation vaccines.


Subject(s)
Antibodies, Viral/immunology , COVID-19/immunology , Contact Tracing/methods , Cross Reactions/immunology , Memory T Cells/immunology , SARS-CoV-2/immunology , Adult , COVID-19/epidemiology , COVID-19/virology , Coronavirus/immunology , Coronavirus/physiology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Male , Memory T Cells/metabolism , Memory T Cells/virology , Middle Aged , Pandemics/prevention & control , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism , Young Adult
7.
BMJ Open ; 11(10): e055435, 2021 10 22.
Article in English | MEDLINE | ID: covidwho-1480255

ABSTRACT

OBJECTIVES: The steroid hormone vitamin D has roles in immunomodulation and bone health. Insufficiency is associated with susceptibility to respiratory infections. We report 25-hydroxy vitamin D (25(OH)D) measurements in hospitalised people with COVID-19 and influenza A and in survivors of critical illness to test the hypotheses that vitamin D insufficiency scales with illness severity and persists in survivors. DESIGN: Cross-sectional study. SETTING AND PARTICIPANTS: Plasma was obtained from 295 hospitalised people with COVID-19 (International Severe Acute Respiratory and emerging Infections Consortium (ISARIC)/WHO Clinical Characterization Protocol for Severe Emerging Infections UK study), 93 with influenza A (Mechanisms of Severe Acute Influenza Consortium (MOSAIC) study, during the 2009-2010 H1N1 pandemic) and 139 survivors of non-selected critical illness (prior to the COVID-19 pandemic). Total 25(OH)D was measured by liquid chromatography-tandem mass spectrometry. Free 25(OH)D was measured by ELISA in COVID-19 samples. OUTCOME MEASURES: Receipt of invasive mechanical ventilation (IMV) and in-hospital mortality. RESULTS: Vitamin D insufficiency (total 25(OH)D 25-50 nmol/L) and deficiency (<25 nmol/L) were prevalent in COVID-19 (29.3% and 44.4%, respectively), influenza A (47.3% and 37.6%) and critical illness survivors (30.2% and 56.8%). In COVID-19 and influenza A, total 25(OH)D measured early in illness was lower in patients who received IMV (19.6 vs 31.9 nmol/L (p<0.0001) and 22.9 vs 31.1 nmol/L (p=0.0009), respectively). In COVID-19, biologically active free 25(OH)D correlated with total 25(OH)D and was lower in patients who received IMV, but was not associated with selected circulating inflammatory mediators. CONCLUSIONS: Vitamin D deficiency/insufficiency was present in majority of hospitalised patients with COVID-19 or influenza A and correlated with severity and persisted in critical illness survivors at concentrations expected to disrupt bone metabolism. These findings support early supplementation trials to determine if insufficiency is causal in progression to severe disease, and investigation of longer-term bone health outcomes.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Vitamin D Deficiency , Critical Illness , Cross-Sectional Studies , Humans , Influenza, Human/complications , Influenza, Human/epidemiology , Pandemics , SARS-CoV-2 , Survivors , Vitamin D , Vitamin D Deficiency/complications , Vitamin D Deficiency/epidemiology
9.
Lancet Rheumatol ; 3(7): e498-e506, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1230832

ABSTRACT

BACKGROUND: Early in the pandemic it was suggested that pre-existing use of non-steroidal anti-inflammatory drugs (NSAIDs) could lead to increased disease severity in patients with COVID-19. NSAIDs are an important analgesic, particularly in those with rheumatological disease, and are widely available to the general public without prescription. Evidence from community studies, administrative data, and small studies of hospitalised patients suggest NSAIDs are not associated with poorer COVID-19 outcomes. We aimed to characterise the safety of NSAIDs and identify whether pre-existing NSAID use was associated with increased severity of COVID-19 disease. METHODS: This prospective, multicentre cohort study included patients of any age admitted to hospital with a confirmed or highly suspected SARS-CoV-2 infection leading to COVID-19 between Jan 17 and Aug 10, 2020. The primary outcome was in-hospital mortality, and secondary outcomes were disease severity at presentation, admission to critical care, receipt of invasive ventilation, receipt of non-invasive ventilation, use of supplementary oxygen, and acute kidney injury. NSAID use was required to be within the 2 weeks before hospital admission. We used logistic regression to estimate the effects of NSAIDs and adjust for confounding variables. We used propensity score matching to further estimate effects of NSAIDS while accounting for covariate differences in populations. RESULTS: Between Jan 17 and Aug 10, 2020, we enrolled 78 674 patients across 255 health-care facilities in England, Scotland, and Wales. 72 179 patients had death outcomes available for matching; 40 406 (56·2%) of 71 915 were men, 31 509 (43·8%) were women. In this cohort, 4211 (5·8%) patients were recorded as taking systemic NSAIDs before admission to hospital. Following propensity score matching, balanced groups of NSAIDs users and NSAIDs non-users were obtained (4205 patients in each group). At hospital admission, we observed no significant differences in severity between exposure groups. After adjusting for explanatory variables, NSAID use was not associated with worse in-hospital mortality (matched OR 0·95, 95% CI 0·84-1·07; p=0·35), critical care admission (1·01, 0·87-1·17; p=0·89), requirement for invasive ventilation (0·96, 0·80-1·17; p=0·69), requirement for non-invasive ventilation (1·12, 0·96-1·32; p=0·14), requirement for oxygen (1·00, 0·89-1·12; p=0·97), or occurrence of acute kidney injury (1·08, 0·92-1·26; p=0·33). INTERPRETATION: NSAID use is not associated with higher mortality or increased severity of COVID-19. Policy makers should consider reviewing issued advice around NSAID prescribing and COVID-19 severity. FUNDING: National Institute for Health Research and Medical Research Council.

10.
Trends Microbiol ; 29(7): 648-662, 2021 07.
Article in English | MEDLINE | ID: covidwho-1171466

ABSTRACT

Even in nonpandemic times, respiratory viruses account for a vast global burden of disease. They remain a major cause of illness and death and they pose a perpetual threat of breaking out into epidemics and pandemics. Many of these respiratory viruses infect repeatedly and appear to induce only narrow transient immunity, but the situation varies from one virus to another. In the absence of effective specific treatments, understanding the role of immunity in protection, disease, and resolution is of paramount importance. These problems have been brought into sharp focus by the coronavirus disease 2019 (COVID-19) pandemic. Here, we summarise what is now known about adaptive immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and draw comparisons with immunity to other respiratory viruses, focusing on the longevity of protective responses.


Subject(s)
Adaptive Immunity , COVID-19/immunology , Respiratory Tract Infections/virology , SARS-CoV-2/immunology , Viruses/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Respiratory Tract Infections/epidemiology , SARS-CoV-2/pathogenicity , Time Factors
11.
Sci Immunol ; 6(57)2021 03 10.
Article in English | MEDLINE | ID: covidwho-1127535

ABSTRACT

While it is now widely accepted that host inflammatory responses contribute to lung injury, the pathways that drive severity and distinguish coronavirus disease 2019 (COVID-19) from other viral lung diseases remain poorly characterized. We analyzed plasma samples from 471 hospitalized patients recruited through the prospective multicenter ISARIC4C study and 39 outpatients with mild disease, enabling extensive characterization of responses across a full spectrum of COVID-19 severity. Progressive elevation of levels of numerous inflammatory cytokines and chemokines (including IL-6, CXCL10, and GM-CSF) were associated with severity and accompanied by elevated markers of endothelial injury and thrombosis. Principal component and network analyses demonstrated central roles for IL-6 and GM-CSF in COVID-19 pathogenesis. Comparing these profiles to archived samples from patients with fatal influenza, IL-6 was equally elevated in both conditions whereas GM-CSF was prominent only in COVID-19. These findings further identify the key inflammatory, thrombotic, and vascular factors that characterize and distinguish severe and fatal COVID-19.


Subject(s)
COVID-19/blood , Cytokines/blood , Adult , Aged , COVID-19/immunology , Cytokines/immunology , Female , Humans , Inflammation/blood , Inflammation/immunology , Influenza A Virus, H1N1 Subtype , Influenza, Human/blood , Influenza, Human/immunology , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL